Answer Key Multiple Choice (PART I)

1.	В	21.	В
2.	В	22.	D
3.	С	23.	А
4.	А	24.	В
5.	D	25.	С
6.	D	26.	С
7.	А	27.	В
8.	С	28.	А
9.	С	29.	D
10.	D	30.	В
11.	С	31.	В
12.	D	32.	В
13.	С	33.	В
14.	D	34.	А
15.	В	35.	А
16.	В	36.	С
17.	D	37.	В
18.	D	38.	А
19.	А	39.	С
20.	D	40.	С

Part II Total Value : 60%

41. a. A compound is found to have a % composition of 72.71% oxygen and 27.29% carbon. Determine the empirical formula of the compound.

$$72.71\%0 \rightarrow 72.71g\ 0\}$$
 0.5%

$$27.29\%C \to 27.29g\ C\}$$
 0.5%

$$n(0) = \frac{m}{M} = \frac{72.71g}{16.00g/mol} = 4.54 \ mol$$
 0.5%

$$n(C) = \frac{m}{M} = \frac{27.29g}{12.01g/mol} = 2.27mol \qquad 0.5\%$$

$$\frac{4.54mol\,0:2.27\,mol\,C}{2.27}$$
1%

$$EF = CO_2 1\%$$

b. i. What mass of potassium sulfate, K_2SO_4 , is required to produce 2.50 L of 1.25 mol/L solution?

 $M_{(K_2SO_4)} = 2 \times 39.10 \frac{g}{mol} + 1 \times 32.07 \frac{g}{mol} + 4 \times 16.00 \frac{g}{mol} = 174.27 \ g/mol \qquad 1\%$

$$n = C \times V = 1.25 \frac{mol}{L} \times 2.50 L = 3.13 mol$$
 1%

$$m = n \times M = 3.13 \ mol \ \times 174.27 \ \frac{g}{mol} = 545 \ g$$
 1%

ii. With reference to appropriate equipment, outline the steps you would use to make the potassium sulfate solution described above.

2%

- 1. Using scales, obtain 545 g of potassium sulfate in a 4.00 L beaker.
- 2. Add water to the dissolved compound.
- 3. Transfer to a 2.50 L volumetric flask.
- 4. Add water to exactly 2.50 L.
- 5. Stopper and invert the volumetric flask to thoroughly mix the solution.

(OR other appropriate answer)

c. What is the mass of 4.00 L of ammonia gas $(NH_{3(g)})$ at STP?

$$n_{(NH_3)} = \frac{v}{V} = \frac{4.00L}{22.4L/mol} = 0.17857 \ mol$$
 1%

$$M_{(NH_3)} = 1 \times 14.01 + 3 \times 1.01 = 17.04g/mol$$
1%

$$m_{(NH_3)} = n \times M = 0.17857 \ mol \times \frac{17.04g}{mol} = 3.04 \ g$$
 1%

d. Given a reaction between 80.0 g of tin (II) fluoride (SnF₂) and excess hydrochloric acid, what mass of tin (II) chloride would be obtained from the chemical reaction below?

$$SnF_2 + 2HCl_{(aq)} \rightarrow SnCl_2 + 2HF_{(aq)}$$

$$M_{(SnF_2)} = 1 \times 118.69 \frac{g}{mol} + 2 \times 19.00 \frac{g}{mol} = 156.69 \ g/mol$$
 1%

$$n_{(SnF_2)} = \frac{m}{M} = \frac{80.0g/mol}{156.69g/mol} = 0.51056 \ mol$$
 1%

$$M_{(SnCl_2)} = 1 \times 118.69 \frac{g}{mol} + 2 \times 35.45 \frac{g}{mol} = 189.59 \ g/mol$$
 1%

$$m_{(SnCl_2)} = n \times M = 0.51056 mol \times 189.59 \frac{g}{mol} = 96.8 g$$
 1%

e. In the laboratory, a student reacts 0.179 mol of solid iron with 50.0 mL of 1.50 mol/L copper (II) chloride solution,

$$2 Fe_{(s)} + 3 CuCl_{2(aq)} \rightarrow 2 FeCl_{3(aq)} + 3 Cu_{(s)}$$

Using appropriate calculations, identify the limiting reagent and predict the amount of solid copper that would be produced.

$$n_{CuCl_2} = 1.50 \frac{mol}{L} \times 0.0500 L = 0.0750 mol CuCl_2$$
 1%

<u>Using Fe</u>

$$n_{Cu} = 0.179 \ mol \ Fe \ \times \frac{3 \ mol \ Cu}{2 \ mol \ Fe} = 0.269 \ mol \ Cu \ produced.$$
 1%

Using CuCl₂

$$n_{Cu} = 0.0750 \ mol \ CuCl_2 \ \times \frac{3 \ mol \ Cu}{3 \ mol \ CuCl_2} = 0.0750 \ mol \ Cu \ produced.$$
 1%

Because less copper is produced using $CuCl_2$, $CuCl_2$ is the limiting reagent. 1%

(Other suitable calculations accepted as well).

f. Calcium ion, Ca^{2+} , is one of the ions in human blood. Using the solubility table, determine which substances below, if swallowed, would result in a significant decrease in calcium ion concentration in the blood. Give reasons for choices in the space provided.

Substance	Decrease in Ca ²⁺ (Yes/No)	Reason
sodium acetate (NaCH ₃ COOH)	No	The concentration of Ca^{2+} ions will not change because Ca^{2+} ions will not form a precipitate with acetate CH_3COO^- ions because, if formed, $Ca(CH_3COOH)_2$ has a high solubility.
sodium chloride (NaCl)	No	The concentration of Ca^{2+} ions will not change because Ca^{2+} ions will not form a precipitate with chloride Cl^{-} ions because, if formed, $CaCl_{2}$ has a high solubility.

f.

sodium nitrate (NaNO ₃)	No	The concentration of Ca^{2+} ions will not change because Ca^{2+} ions will not form a precipitate with nitrate NO_3^{2-} ions because, if formed, $CaNO_3$ has a high solubility.
sodium sulfate (Na ₂ SO ₄)	No	The concentration of Ca^{2+} ions will decrease as the Ca^{2+} ions combine with sulfate ions to produce calcium sulfate. $CaSO_4$ has a low solubility in water and will form a precipitate.

g. Copper exists as two naturally occurring isotopes. One isotope has an atomic mass of 62.93 amu and a relative abundance of 69.1%. The percent abundance of the other isotope is 30.9%. If the average atomic mass of copper is 63.55 amu, calculate the atomic mass of the other isotope.

(62.93amu)(0.691) + (X)(0.309) = 63.55	1%
43.4846 + (X)(0.309) = 63.55	
(X)(0.309) = 20.0654	1%
X = 64.94amu	1%

- 42. a. For the molecule SCl_2 ,
- (i) Draw the electron dot diagram.
- (ii) Name and draw the VSEPR shape diagram. 2% V-Shaped
- (iii) Explain why SCl₂ is a polar molecule. 2%
 Bond dipoles occur from sulfur to each chlorine atom:

CI S CI

Because the bond dipoles DO NOT cancel the molecule is POLAR.

2%

b.	Explain why diamond has a higher melting point than graphite, yet both are made up
	of only carbon atoms.

Diamond has network covalent bonding.	1%
Graphite has only covalent bonding.	1%
Network covalent solids are extremely hard and have higher melting points than covalent compounds.	1%

c. For the 2 compounds CH_3OH and CH_3F , list the intermolecular forces present in each compound and identify which has the higher boiling point.

	<u>CH₃OH</u>	<u>CH₃F,</u>	
LDF	18 electrons	18 electrons	1%
Dipole-Dipole	Yes	Yes	1%
Hydrogen Bonding	Yes	No	1%

 CH_3OH has greater intermolecular forces and is thus expected to have a higher boiling point. 1%

d. Consider the following data for four different substances:

Use the information provided in the table to identify and explain which substance has:

(i) Network Covalent Bonding

Compound	- X	1%
Reasons	- Very high MP and BP - Does NOT conduct in solid phase or in water	1%

(ii) Ionic Bonding

Compound	- W:	19	6
----------	------	----	---

Reasons	- MP and BP are relatively high	1%
	- Conducts in solution but not as a solid	

43. a. Name each of the following compounds using the IUPAC naming system.

(i).
$$H_3C$$
--CH₂CH-CH₂CH-CH₂CH₂CH₃ 2%
 $\begin{array}{c} H_2 \\ CH_2 \\ CH_3 \end{array}$

3-ethyl-5methyloctane

- (i). 2-hexanol H_3C —CH-CH₂CH₂CH₂CH₃ \downarrow OH
- (ii). 4-ethyl-4-methyl-2-heptyne

 CH_3

$$H_{3}C-C\equiv C-C-CH_{2}-CH_{2}-CH_{3}$$

 $H_{3}C-C\equiv C-C-CH_{2}-CH_{2}-CH_{3}$

 CH_{2}

 CH_{3}

 CH_{3}

- (iii). 3-pentanone 2% $H_3C-CH_2C-CH_2-CH_3$
- c. A reaction between ethene and water produces Compound A. Compound A is further reacted with ethanoic acid to produce Compound B.

Use structural diagrams to show Compound A and Compound B.

Compound A

2.
$$H = \begin{array}{c} H & H \\ H & H \\ - C & - C \\ - H \end{array} + ethanoic acid \rightarrow H_{3}C = \begin{array}{c} O \\ H \\ - C \\ - C - O \\ - C \\ - C$$

Compound B

2%